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Abstract— This study suggests a hybrid deep learning model that blends the benefits of LSTM and CNN networks to accurately classify 

Wireless Capsule Endoscopy (WCE) pictures from the Kvasir dataset to meet the growing need for automated medical image analysis. 

Enhancing the model’s ability to handle intricate visual patterns, the CNN extracts spatial characteristics from the images, while the 

LSTM records temporal connections between these features. To reduce the impact of unbalanced data we use a weighted loss function 

and data augmentation. With an accuracy of 97.8%, experimental data show that our suggested model works superior to the state-of-the-

art methods now in use. The accuracy and efficiency WCE and gastrointestinal image analysis could be greatly increased by this research .  

Index Terms— WCE Image Classification, Kvasir Dataset, Hybrid CNN-LSTM 

 

I. INTRODUCTION 

Wireless Capsule Endoscopy (WCE) is a less nosy 

alternative than the traditional endoscopy and a diagnostic 

procedure that involves swallowing a small, A camera-

equipped pill capsule records thousands of high-resolution 

pictures as it passes through the digestive tract and wirelessly 

sends them to a patient's wearable recording device. These 

images are then downloaded and analyzed by a physician to 

diagnose various gastrointestinal conditions, such as obscure 

bleeding, Crohn's disease, and small bowel tumours.WCE 

provides a comprehensive view of the small intestine, 

allowing the physicians to make more accurate diagnoses and 

improve more effective treatment plans. Here, a study 

proposes a novel deep learning-based approach to streamline 

WCE image analysis. 

Kvasir’s  dataset is an extensive compilation of labelled GI 

images from WCE it provides a valuable resource for training 

and evaluating training and evaluating and has set a 

benchmark for deep learning models, particularly in tasks like 

object detection, image classification, Segmentation and 

contributing to timely and accurate diagnoses. It consists of 

high-quality images and videos captured during endoscopic 

examinations, covering a wide range of GI abnormalities such 

as polyps, esophagitis, ulcers, and normal mucosa. Its 

availability and comprehensiveness make it a critical tool in 

advancing computer-aided diagnostics in gastroenterology. 

Both the Convolutional Neural Networks (CNN) and Long  

Short-Term Memory (LSTM) networks are essential for the 

diagnosis of gastrointestinal (GI) disorders and Wireless 

Capsule Endoscopy (WCE). 

CNNs excel in feature extraction from WCE images by 

identifying patterns such as polyps, ulcers, or bleeding with 

high accuracy. Meanwhile, LSTM networks, designed to 

handle sequential data, are well-suited for analyzing video 

frames from WCE, capturing temporal dependencies critical 

for diagnosing motility disorders or tracking lesion 

progression.  

Deep Convolutional Neural Networks (CNN) is very good 

at classifying medical pictures because they are very good at 

extracting spatial characteristics from images. 

In this study, Combining CNNs for spatial feature learning  

with LSTMs for temporal sequence analysis provides a robust 

framework for improving GI diagnostics, enhancing both 

accuracy and efficiency in clinical settings, In order to 

improve feature extraction for wireless capsule endoscopy 

(WCE) image classification, a hybrid CNN-LSTM 

architecture was used. 

This research emphasizes developing a robust and efficient  

system for WCE image analysis, which could enhance patient 

outcomes and reduce the diagnostic workload for healthcare 

professionals. 

II. LITERATURE REVIEW 

In order to gain a deeper understanding of gastrointestinal 

(GI) tract diseases and polyp detection, an extensive research 

effort was conducted; involving a thorough analysis of 

various research papers, previously developed systems, and 

currently implemented technologies. This literature review 

categorizes studies according to key technological 

advancements and methodological approaches in GI disease 

diagnosis. 

There are many number of researches proposed 

sophisticated architecture that combine CNN with LSTM, 

which improves the precision of GI tract disease diagnosis. 

 For instance, a residual LSTM-layered CNN architecture 

was proposed to classify GI tract diseases, leveraging residual 

connections to enhance feature extraction and temporal 

sequence learning, which significantly improved diagnostic 

accuracy and computational efficiency [1]. Öztürk and 
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Özkaya further refined this approach by developing an 

LSTM-based CNN model, optimizing the integration of 

spatial and temporal patterns, and achieving high 

classification performance across multiple datasets [2]. 

Another notable study developed a hybrid CNN-LSTM 

model to classify wireless capsule endoscopy (WCE) images  

as either bleeding or normal. The CNN component extracted  

spatial features, while the LSTM captured temporal 

dependencies, outperforming traditional WCE classification 

techniques in diagnostic accuracy [3]. Likewise, a graph 

convolutional neural network (GCNN) for weakly supervised 

anomaly localisation in capsule endoscopy movies was 

proposed by Adewole et al. 

This method utilized spatial relationships between image 

regions to localize abnormalities, thereby reducing the need 

for extensive labelling and expediting the diagnostic process 

[5]. 

Furthermore, a number of research highlighted the 

significance of poorly supervised and self-supervised 

learning strategies. Pascual et al. introduced a time-based 

self-supervised learning method for WCE image analysis, 

leveraging temporal patterns in unlabeled data to train models  

effectively [10]. They further explored dilated CNNs for 

WCE abnormality detection, highlighting their ability to 

capture broader contextual information without increased 

computational costs [11]. This methodology facilitated  

efficient diagnostic processes while reducing dependency on 

labelled data [12]. 

Finally, other works explored complementary aspects of 

GI imaging. For example, Goel et al. demonstrated the 

significance of colour space selection in improving WCE 

abnormality detection [9]. Additionally, studies investigating 

LSTM-based localization techniques for WCE highlighted 

the potential of temporal sequence learning in enhancing 

spatial positioning within the GI tract, aiding clinical 

interpretation [8]. These diverse approaches collectively  

advance the field of GI disease detection and contribute to 

more accurate, efficient, and automated diagnostic 

solutions.[13][14] 

III. METHODOLOGY 

3.1 Foundation and Context of the Proposed Method  

The CNN-LSTM architecture leverages CNNs to extract  

spatial features from images, while LSTMs process these 

features to capture sequence dependencies. This dual 

approach suits the Kvasir dataset, where CNNs capture 

distinct visual features of various gastrointestinal diseases, 

and LSTM layers aggregate these features over multiple 

image frames to reinforce classification accuracy across 

categories. 

3.2 Proposed Method Overview 

The Kvasir dataset, characterized by diverse 

gastrointestinal diseases, presents a unique challenge for 

image classification. The CNN-LSTM architecture is used to 

address this. 

While LSTM’s  efficiently capture temporal dependencies 

within a sequence, CNN are superior extracting spatial 

characteristics from images. This synergy allows the model 

to learn discriminative visual features from individual images  

and then utilize LSTM layers to integrate these features 

across multiple frames, enhancing classification accuracy for 

different disease categories. 

This study investigates the effectiveness of various CNN 

architectures, such as AlexNet and ResNet, as feature 

extractors in conjunction with LSTM layers. By  

incorporating LSTM layers that process the outputs of the 

CNN's pooling layers, the model can better capture the 

sequential relationships present in the image data. This 

approach aims to improve classification accuracy across the 

imbalanced and diverse classes within the Kvasir dataset. In 

order to capture temporal dependencies within WCE image 

sequences, the suggested model integrates long short-term 

memory networks (LSTMs) with CNNs for spatial feature 

extraction.  

This hybrid approach is designed to improve the 

classification accuracy of WCE data by effectively learning  

both spatial and temporal patterns. 

3.3 Parameter Setting 

Key parameters include CNN kernel size, number of 

LSTM units, dropout rate, and learning rate adjustments. 

Using the Kvasir dataset, various CNN architectures are 

tested, and specific settings are optimized to handle data 

imbalance and maintain model generalizability across 

multiple classes. 

Table 1: Parameters Used in Proposed Model. 

Hyper parameter Value 

Activation Function Softmax 

Cost Function Categorical Entropy 

Learning Rate 0.001 

Optimizer Adam 

Epochs 50 

Dropout Ratio 0.2 

Batch Size 32 

Training Callbacks Early Stopping 

3.3.1. Dataset Preparation 

Preprocessing: 

• Resize the images to a fixed size (e.g., 224x224). 

• Normalize the pixel values to the range [0, 1]. 

• Augment the dataset with transformations (rotation, 

flipping, brightness/contrast adjustments, and zooming) 

to improve generalization and increase data diversity. 

• Separate the dataset into test, validation, and training sets 

(for example, 70%, 15%, and 15%). 

• Consider the temporal relationship between frames , 
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especially for dynamic processes like polyp removal or 

bleeding. 

3.3.2. Model Architecture 

Feature Extraction (CNN): 

• We use a pre-trained CNN backbone (e.g., ResNet50, 

VGG16, or EfficientNet) for transfer learning. 

• To extract high-level spatial characteristics, eliminate the 

last classification layers.  

• Adjust the Kvasir dataset's pre-trained layers to better fit 

its domain. 

 
Fig. 1 flow diagram of Multi Classification in WCE: 

Temporal Modeling (LSTM): 

• CNN-extracted flatten spatial features into a series. 

• Pass the sequence into a bidirectional LSTM layer to 

capture sequential patterns across frames or image sets. 

• To extract pertinent characteristics from every frame, use 

numerous convolutional layers with the right kernel sizes 

and filter numbers. 

Pre-trained CNNs and Data Augmentation: 

• Leverage pre-trained CNN models, utilizing knowledge 

from large datasets to improve performance. 

• To improve model generalisation and diversify training 

data, use data augmentation approaches. 

Classification Layer: 

• Concatenate the final outputs of the LSTM. 

• Use fully connected (dense) layers with ReLU activations. 

• to reduce spatial dimensions and computational cost, we 

will apply pooling layers (Max Pooling) 

• We the Use softmax activation in the last layer for mult i-

class classification. 

3.3.3. Implementation Steps 

1. Input Layer: 

Input shape: (sequence_length, height, width, channels), 

e.g., (5, 224, 224, 3). 

2. CNN Backbone: 

• Determine the spatial characteristics of every picture in 

the series. 

• Output shape: (sequence_length, feature_dim), where  

feature_dim is the number of CNN output features. 

3. LSTM Layer: 

• Process the temporal sequence using one or more 

bidirectional LSTM layers.Example configuration: 256 

hidden units, dropout = 0.3. 

• Feed the output of the CNN layers into LSTM layers to 

capture long-range dependencies between frames within  

a sequence. 

4. Fully Connected Layers: 

• Regularization is achieved by dropout after dense layers 

with 128 and 64 neurons.  

• An output layer with as many neuron’s  as the Kvasir 

dataset's classes. 

• To map the learnt features to the classification problem, 

connect the LSTM layers output to the fully connected 

layers for multi-class image classification, use the proper 

activation functions (softmax, for example). 

5. Loss Function: 

Use categorical cross-entropy for multi-clas s  

classification. 

6. Optimizer: 

We use the Adam optimizer with a learning rate 0.001 all 

the values of the hypermeter are showed in the above table-1. 

3.3.4. Training Strategy 

Batching: 

Use mini-batches with sequences of images (e.g., 

sequences of 5 images from a video or neighboring image in 
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the dataset). 

Early Stopping: 

After a few epochs, if there is no progress in validation  

accuracy, cease training. 

Evaluation Metrics: 

Precision, Recall, F1 Score, and Accuracy. 

3.3.5. Loss Function and Optimization 

Cross-Entropy Loss: 

• Calculate the difference between the true and expected 

class probabilities. 

• Optimize the model's parameters using an efficient  

optimizer like Adam or SGD with momentum. 

3.3.6. Advantages 

• CNN: Strong spatial feature extraction for individual 

images. 

• LSTM: Captures sequential dependencies, improving  

classification for temporally correlated images (e.g., 

frames in a video). 

• A CNN-LSTM hybrid architecture effectively captures 

both spatial and temporal information within the image 

sequences. 

3.3.7. Training and Validation 

Data Split: 

• Separate the dataset into sets of testing, validation and 

training  

• Use the training set to update model parameters. 

• To avoid overfitting, keep an eye on performance on the 

validation set. 

• Assess how well the finished model performs on the 

testing set. 

Transfer Learning:  

Leverage pre-trained models (e.g., RESNET, VGG) as 

feature extractors to improve performance and reduce 

training time. 

Data Balancing: 

Use strategies like class weighting, under sampling, or 

oversampling to address issues of class imbalance. 

• Regularisation:  

Use strategies (such as dropout and L1/L2 regularisation) 

to enhance generalization and avoid overfitting. 

• Hyper parameter tuning:  

To maximize performance, experiment with various hyper 

parameters (such as learning rate, batch size, number of 

layers, and number of units). 

• By carefully considering these aspects and fine-tuning the 

architecture, the proposed CNN-LSTM hybrid model can 

achieve robust and accurate multi-image classification on 

the Kvasir dataset.[9] 

IV. EXPERIMENTS  AND EXPERIMENTAL 

RESULTS 

 Experiments demonstrate that CNN-LSTM models 

perform well on the Kvasir dataset, achieving higher 

classification accuracy than standalone CNN models. Metrics 

such as F1-score indicate that the LSTM layers contribute 

significantly to balancing accuracy across both common and 

rare classes, addressing challenges typical in medical image 

datasets.[7] 

The evaluation of a model's performance involves several 

key metrics that provide insights into its effectiveness. [15][1] 

The proposed method is executed on a system featuring an 

Intel Core i7-7700K CPU (4.2 GHz), 32 GB of DDR4 RAM, 

and an NVIDIA GeForce GTX 1080 graphics card. To assess 

the effectiveness of the suggested framework, three 

prominent CNN architectures—AlexNet, GoogLeNet, and 

ResNet50—are employed. [2] 

These CNN models are applied through a transfer learning  

method to enhance the feature extraction component. 

Throughout the experiments, the three architectures are 

utilized with their standard settings and without altering the 

original layers. Only the specified LSTM blocks are 

incorporated. To evaluate how the sample size in the dataset 

impacts the proposed framework, three datasets of 2000, 

4000, and 6000 samples are generated.[3][4] 

The visuals in these datasets are chosen at random from the 

primary dataset. A total of 27 experiments were conducted 

using three different datasets along with three distinct CNN 

architectures, which include ANN, SVM, or our LSTM 

block. To assess our experimental results, we utilize six 

different metrics. The metrics measured are sensitivity, 

specificity, accuracy, precision, and F1-score.[5][6] 

Table 2: Metrics Used in Proposed Model. 

S.no Metric Equation 

1 Accuracy (ACC) (TP+TN)/(TP+TN+FN+FP) 

2 Precision TP/(TP+FP) 

3 Recall TP/(TP+FN) 

4 F1-Score 
2 ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . 𝑅𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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Table 3: Classification performance of proposed model with the other models 

S.NO MODEL Precision Recall F1score Accuracy 

1. Residual LSTM layered CNN for Classification of 

gastrointestinal tract diseases [1]. 

98.05 98.05 98.05 98.05 

2. Gastrointestinal tract classification using improved LSTM based 

CNN [2] 

94.46 96.37 93.54 97.90 

3. Hybrid CNN-LSTM Model for the classification of wireless  

capsule endoscopy images for bleeding or Normal Diagnosis [3]. 

90 80 85 90 

4. Proposed Model 98.46 96.44 97.44 97.80 

 

 
Fig. 2: Graphs for CNN+LSTM Proposed model with 

other models 

V. CONCLUSIONS 

By the use of this Hybrid CNN+LSTM for multi class 

classification in kvasir dataset, highlighting their capability  

of integrity of spatial and temporal data for improved  

accuracy. Using this Hybrid Deep Learning Model, we have 

seen the following features: 

Class imbalance: While the paper addresses class 

imbalance through data augmentation and weighted loss 

functions, the inherent variability in the Kvasir dataset may 

still pose challenges. Certain categories may have 

significantly fewer samples, which can affect the model's  

performance on underrepresented classes [1]. 

Limited Sample Size: The Kvasir dataset, although 

comprehensive, has limitations in sample size for some 

categories. A model with this limitation may not generalize  

well across all classes, especially for rare GI abnormalities. 

 
Fig. 3: Confusion Matrix For Proposed Model on Kvasir 

Dataset 

Quality of images: A WCE image's quality and content 

variability can complicate disease detection. There is a 

possibility that the model's functionality could be affected by  

 Low-quality or noisy images, which are common in real-

world situations [22]. 

 
Fig. 4: Confusion Matrix For Proposed Model on Kvasir 

Dataset 
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Static vs Temporal Analysis: Despite the hybrid model's  

effective combination of CNNs for spatial feature extraction  

and LSTMs for temporal dependencies, it may still struggle 

with sequential data. It is likely that the model will fall short 

of capturing all relevant patterns due to its reliance on the 

quality of the temporal data [23] [4]. 

Computational Complexity: Because the hybrid model 

combines CNN and LSTM, its architecture may require more 

computing power. This can be a hurdle to implementation in 

resource-constrained contexts, where faster, less resource-

intensive models may be desirable.[21] 

Generalizability: The Kvasir dataset may not adequately 

represent the range of WCE images found in clinical practice, 

limiting the model's generalisability. This raises issues over 

the model's capacity to generalise to different datasets or real-

world applications.[15] 

 
Fig. 5: Confusion Matrix For Proposed Model on Kvasir 

Dataset 

• This study presents a novel deep learning approach for 

efficient WCE image analysis.the proposed hybrid CNN-

LSTM model shows promise for increasing detection 

efficiency and accuracy of GI Tract Disease.  [16][17] 

• In addition to improving the effectiveness and efficiency  

of colorectal cancer diagnostic tools, this research makes 

them less invasive and more accurate. 

• The prevalence of GI Tract Disease and the limitations  

of colonoscopy highlight the need for efficient diagnostic 

tools. Although Capsule endoscopy is a viable option, 

analyzing capsule endoscopy takes times. [18] 

• This study suggests a method based on deep learning to 

address this challenge by leveraging hybrid CNN-LSTM 

architecture for WCE image classification on the Kvasir 

dataset. [19] 

• The Proposed model combines the spatial feature 

extraction capabilities of CNN’s  with temporal 

dependence modeling of LSTM’s  offers a robust and 

efficient solution for improving the accuracy and 

efficiency of GI endoscopy image analysis.[20] 

 
Fig.6: Training and Validation Accuracy and Loss for 

Proposed Method on Kvasir Dataset 
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